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Extremal and Probabilistic Graph Theory 

March 17 

 • Recall : Erdӧs-Stone Theorem. 

For ∀ graph 𝐹 with 𝜒 𝐹 ≥ 2, we have ex(𝑛, 𝐹)= (1 −
1

𝜒 𝐹 
+ o(1))  𝑛

2
 . 

We consider an improvement by providing a quantitative bound. 

• Definition. For ∀ 𝑟 ≥ 2 and ε > 0, let 

𝑓𝑟 𝑛, 𝜀 = max{𝑚 : ex(𝑛, 𝑇𝑟(𝑟𝑚)) ≤ ex(𝑛, 𝐾𝑟 ) + 𝜀 𝑛
2
 − 1} 

• Remark.  

(1) If 𝑚 increases, ex(𝑛, 𝑇𝑟(𝑟𝑚) will also increases. 

(2) Erdὄs-Stone Theorem tells for fixed 𝑚, 𝜀 > 0, this inequality holds when 𝑛 → ∞. But now 

we consider the counterpart, that is, 𝑛, 𝜀 fixed, how large 𝑚 can be. 

The meanings of 𝑓𝑟 𝑛, 𝜀 < 𝐶 is  ex(𝑛, 𝑇𝑟(𝑟𝐶)) > ex(𝑛, 𝐾𝑟 ) + 𝜀 𝑛
2
 − 1. 

• Definition. For 𝑓 𝑛 , 𝑔(𝑛), 

(1) 𝑓~𝑔 if  limn→∞
𝑓 𝑛 

𝑔 𝑛 
= 1 . 

(2) 𝑓 ≲ 𝑔 if  limn→∞
𝑓 𝑛 

𝑔 𝑛 
≤ 1. 

• Theorem 𝟏.  𝑓2 𝑛, 𝜀 ≳ log1/𝜀 𝑛. 

• Proof of Theorem 𝟏. Recall K-S-T Theorem, 

ex(𝑛, 𝑇2(2𝑚)) = ex(𝑛, 𝐾𝑚,𝑚 )≤
1

2
 𝑚 − 1 

1

𝑚𝑛2−
1

𝑚 +
1

2
 𝑚 − 1 𝑛. 

Let ex(𝑛, 𝑇2(2𝑚)) ≤ RHS ≤ ex(𝑛, 𝐾2) + 𝜀 𝑛
2
 − 1. Since ex(𝑛, 𝐾2) = 0, and we consider the 

condition that 𝑛 → ∞, we have  

1

2
𝑛2−

1
𝑚 ≤

1

2
 𝑚 − 1 

1
𝑚𝑛2−

1
𝑚 ≲

𝜀

2
𝑛2 

Which means 
1

ε
≳ 𝑛

1

𝑚 ,then we have m ≳ log1/𝜀 𝑛. 

 

• Theorem 2 (Bollobás-Erdӧs). 𝑓2 𝑛, 𝜀 ≲ 2 log1/𝜀 𝑛 . 

• Proof of Theorem 𝟐. Let 𝑡 = 2 log1/𝜀 𝑛 . 

   We need to construct a 𝐾𝑡,𝑡-free 𝑛-vertex graph 𝐺 with e(𝐺) > 𝜀 𝑛
2
 − 1. 

   Consider random graph 𝐺 = 𝐺(𝑛, 𝜀). i.e. agraph with 𝑛 vertices, where each edge is present 

independently with probability 𝜀. 

   Let 𝑋 = #𝐾𝑡,𝑡 ′s in 𝐺. 

   So 𝔼 𝑋 =
1

2
 𝑛

2𝑡
  2𝑡

𝑡
 𝜀𝑡2

< n2t𝜀𝑡2
=  𝑛2𝜀𝑡 𝑡 . 

   Since 𝑡 = 2 log1/𝜀 𝑛 , we have 𝜀𝑡 ≤ 𝜀log 1/𝜀 𝑛 =
1

n2
. ⟹ 𝔼 𝑋 <  𝑛2𝜀𝑡 𝑡 ≤ 1. 
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   By deletion method, let 𝐺 ′  be obtained from 𝐺 by deleting one edge from each copy of 𝐾𝑡,𝑡  in 

𝐺. So 𝐺 ′  is 𝐾𝑡,𝑡-free and e(𝐺 ′ ) ≥ e(𝐺) –  𝑋. 

    ⟹  𝔼 e(𝐺 ′) ≥ 𝔼 e 𝐺 − 𝑋 = 𝔼 e 𝐺  − 𝔼 𝑋 = 𝜀 𝑛
2
 − 1. 

    There exists a 𝐺 ′  (which is 𝐾𝑡,𝑡-free) with e(𝐺 ′ ) ≥ 𝔼 e(𝐺 ′) > 𝜀 𝑛
2
 − 1. 

    ⟹ ex(𝑛, 𝐾𝑡,𝑡) >  𝜀 𝑛
2
 − 1. 

    ⟹ 𝑓2 𝑛, 𝜀 < 𝑡 = 2 log1/𝜀 𝑛 . 

• Corollary . For ∀ ε > 0, log1/𝜀 𝑛 ≲ 𝑓2 𝑛, 𝜀 ≲ 2 log1/𝜀 𝑛 . 

 

• Theorem 3. For 0 < 𝜀 <
1

r r+1 
, 𝑓𝑟+1 𝑛, 𝜀 ≤ 𝑓2   

𝑛

𝑟
 , 𝑟(𝑟 + 1)𝜀 . 

• Proof of Theorem 3. Let 𝑡 = 𝑓2   
𝑛

𝑟
 , 𝑟(𝑟 + 1)𝜀 + 1 

   Then, there exists a 𝐾𝑡,𝑡-free  
𝑛

𝑟
 -vertex graph 𝐻 with e(𝐻) > 𝑟 𝑟 + 1 𝜀 𝑛

2
 − 1. 

   We want to construct a 𝑇𝑟+1  𝑟 + 1 𝑡 -free graph 𝐺 with relatively many edges. 

    Let 𝐺 be obtained from 𝑇𝑟(𝑛) by adding 𝐻 into one of its 𝑟 parts. 

    But e(𝐺) = e(𝑇𝑟 𝑛 ) + e(𝐻) 

                   > ex(𝑛, 𝐾𝑟+1) + 𝑟 𝑟 + 1 𝜀  
 
𝑛

𝑟
 

2
 − 1 

                   ≥ ex(𝑛, 𝐾𝑟+1) + 𝜀 𝑛
2
 − 1. 

    By define, 𝑓𝑟+1 𝑛, 𝜀 < 𝑡 = 𝑓2   
𝑛

𝑟
 , 𝑟(𝑟 + 1)𝜀  

    ⟹ 𝑓𝑟+1 𝑛, 𝜀 ≤ 𝑓2   
𝑛

𝑟
 , 𝑟(𝑟 + 1)𝜀 . 

• Exercise . Prove 𝐺 is 𝑇𝑟+1  𝑟 + 1 𝑡 -free. 

• Corollary . For 𝑟 ≥ 1 and 𝜀 = 𝜀 𝑛 = o(1), 𝑓𝑟+1 𝑛, 𝜀 ≲ 2 log1/𝜀 𝑛. 

• Proof of Corollary . Exercise (by theorem 2 and 3). 

 

    The best bound is obtained by Ishigami using Szemeredis regularity lemma. 

• Theorem (Ishigami). Let 𝑟 ≥ 2 and 𝜀 = o(1). Then 𝑓𝑟 𝑛, 𝜀 ~𝑓2 𝑛, 𝜀 . In particular, 

log1/𝜀 𝑛 ≲ 𝑓𝑟 𝑛, 𝜀 ≲ 2 log1/𝜀 𝑛. 

 

• The Moon-Moser inequalities. Let 𝐺 be a graph and 𝑁𝑖  be the number of copies of 𝐾𝑖  in 𝐺. 

• Theorem 4. 𝑁3 ≥
4𝑁2

3
(
𝑁2

𝑁1
−

𝑁1

4
). 

• Proof of Theorem 4. For an edge 𝑒, let 𝑑(𝑒) be the number of triangle containing 𝑒. Then  

3𝑁3 =  𝑑 𝑒 

𝑒∈𝐸 𝐺 

≥   𝑑 𝑢 + 𝑑 𝑣 − 𝑛 

𝑢,𝑣∈𝐸(𝐺)

=  𝑑2 𝑢 

𝑢∈𝑉(𝐺)

− 𝑛𝑚 
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By Cauchy-Scharwz inequality, 

 𝑑2 𝑢 

𝑢∈𝑉(𝐺)

− 𝑛𝑚 ≥ 𝑛  
 𝑑 𝑢 𝑢∈𝑉 𝐺 

𝑛
 

2

− 𝑛𝑚 =
4𝑚2

𝑛
− 𝑛𝑚 

• Remark . This implies ex(𝑛, 𝐾3) ≤
𝑛2

4
. 

• Moon-Moser Theorem . If 𝑁𝑠−1 ≠ 0, then 

𝑁𝑠+1

𝑁𝑠
≥

𝑠2

𝑠2 − 1
 

𝑁𝑠

𝑁𝑠−1
−

𝑛

𝑠2
  

   In fact, we show an even stronger result, generalizing this to 𝑟-graphs. 

• Theorem 5. Let 𝐺 be an 𝑟-graph, let 𝑁𝑠 = # copies 𝐾𝑠
(𝑟)

 in 𝐺. If 𝑁𝑠−1 ≠ 0, then  

𝑁𝑠+1

𝑁𝑠
≥

𝑠2

 𝑠 − 𝑟 + 1 (𝑠 + 1)
 

𝑁𝑠

𝑁𝑠−1
−

 𝑟 − 1  𝑛 − 𝑠 + 𝑠

𝑠2
  

• Proof of Theorem 5. In this proof, we denote 

   (1) 𝑒 = clique. 

   (2) 𝒞𝑠 = {all 𝐾𝑠
(𝑟)

 in 𝐺 } 

   (3) If 𝑒 ∈ 𝒞𝑠, then 𝑑 𝑒 = # of 𝐾𝑠+1
(𝑟)

 containing 𝑒. 

It is easy to see  𝑑 𝑒 𝑒∈𝒞𝑠
=  𝑠 + 1 𝑁𝑠−1. 

For 𝑒 ∈ 𝒞𝑠, denote 𝑒1, 𝑒2, ⋯ , 𝑒𝑠 the 𝑠 copies of 𝐾𝑠−1 contained in 𝑒. 

Claim . For ∀𝑒 ∈ 𝒞𝑠, 𝑑 𝑒 ≥
 𝑑 𝑒𝑖 𝑖 − 𝑛−𝑠  𝑟−1 −𝑠

𝑠−𝑟+1
. 

Proof of claim . For fixed 𝑒, we count the number 𝑇𝑒  of pairs (𝐴, 𝑣) s.t.  𝐴 = 𝑠 − 1,  𝐴 ⊆ 𝑒,  

𝑣 ∉ 𝑒 and 𝐴 ∪ {𝑣} ∈ 𝒞𝑠. 

On one hand, 

𝑇𝑒 =  #(𝐴, 𝑣) 𝐴 =𝑠−1
𝐴⊆𝑒

=   𝑑 𝑒𝑖 − 1 𝑖 . 

On the other hand, 𝑇𝑒 =  #(𝐴, 𝑣)𝑣∉𝑒  

Property . If vertex 𝑢 does not form a copy of 𝐾𝑠+1
(𝑟)

 with 𝑒, then there are at most 𝑟 − 1 

many 𝑒𝑖 ′s such that 𝑒𝑖 ∪ {𝑢} ∈ 𝒞𝑠. 

Why? Since 𝑒 ∪ {𝑢} is not  𝐾𝑠+1
(𝑟)

, there exists a subset 𝑅 ⊆ 𝑒 with  𝑅 = 𝑟 − 1 s.t. 𝑅 ∪ {𝑢} is 

not an edge. 

Then only those 𝑒𝑖  obtained from 𝑒 by deleting a vertex of 𝑅 can be 𝐾𝑠
(𝑟)

. 

Thus, there are at most 𝑟 − 1 such 𝑒𝑖 ′s. 

Then for those 𝑢 ∉ 𝑒 satisfying 𝑒 ∪ {𝑢} ∈ 𝒞𝑠+1, #(𝐴, 𝑢) = 𝑠. 

And for those 𝑢 ∉ 𝑒 with 𝑒 ∪ {𝑢} ∉ 𝒞𝑠, by property, #(𝐴, 𝑢) ≤ 𝑟 − 1. 

Then 𝑇𝑒 =  # 𝐴, 𝑣 𝑣∉𝑒 ≤ 𝑑 𝑒 𝑠 +  𝑛 − 𝑠 − 𝑑 𝑒   𝑟 − 1  

⟹ 𝑑 𝑒 𝑠 +  𝑛 − 𝑠 − 𝑑 𝑒   𝑟 − 1 ≥ 𝑇𝑒 =  𝑑(𝑒𝑖)𝑖 − s. 
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Proof of claim done. 

By claim,  

     𝑠 − 𝑟 + 1  𝑠 + 1 𝑁𝑠+1 =  𝑠 − 𝑟 + 1  𝑑 𝑒 𝑒∈𝒞𝑠
 

                     ≥ (𝑠 − 𝑟 + 1)  
 𝑑 𝑒𝑖 𝑖 − 𝑛−𝑠  𝑟−1 −𝑠

𝑠−𝑟+1𝑒∈𝒞𝑠
. 

                   =   𝑑 𝑒𝑖 𝑖 − 𝑁𝑠  𝑛 − 𝑠  𝑟 − 1 + 𝑠 𝑒∈𝒞𝑠
 

                       =  𝑑2 𝑓 − 𝑁𝑠  𝑛 − 𝑠  𝑟 − 1 + 𝑠 𝑓∈𝒞𝑠−1
     

                       ≥ 𝑁𝑠−1   
𝑑 𝑓 

𝑁𝑠−1
𝑓∈𝒞𝑠−1

 
2

− 𝑁𝑠  𝑛 − 𝑠  𝑟 − 1 + 𝑠  

                       ≥
𝑠2𝑁𝑠

2

𝑁𝑠−1
− 𝑁𝑠  𝑛 − 𝑠  𝑟 − 1 + 𝑠  

Proof done. 

 

 

 


