Extremal and Probabilistic Graph Theory

March 17

• Recall : Erdös-Stone Theorem.

For \forall graph *F* with $\chi(F) \ge 2$, we have $ex(n, F) = (1 - \frac{1}{\chi(F)} + o(1)) {n \choose 2}$.

We consider an improvement by providing a quantitative bound.

• **Definition.** For $\forall r \ge 2$ and $\varepsilon > 0$, let

$$f_r(n,\varepsilon) = \max\{m : \exp(n, T_r(rm)) \le \exp(n, K_r) + \varepsilon\binom{n}{2} - 1\}$$

• Remark.

(1) If *m* increases, $ex(n, T_r(rm))$ will also increases.

(2) Erdős-Stone Theorem tells for fixed $m, \varepsilon > 0$, this inequality holds when $n \to \infty$. But now we consider the counterpart, that is, n, ε fixed, how large m can be.

The meanings of $f_r(n,\varepsilon) < C$ is $ex(n,T_r(rC)) > ex(n,K_r) + \varepsilon {n \choose 2} - 1$.

• **Definition.** For f(n), g(n),

(1)
$$f \sim g$$
 if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$.
(2) $f \lesssim g$ if $\lim_{n \to \infty} \frac{f(n)}{g(n)} \le 1$.

- **Theorem 1.** $f_2(n, \varepsilon) \gtrsim \log_{1/\varepsilon} n$.
- Proof of Theorem 1. Recall K-S-T Theorem,

 $ex(n, T_2(2m)) = ex(n, K_{m,m}) \le \frac{1}{2}(m-1)^{\frac{1}{m}}n^{2-\frac{1}{m}} + \frac{1}{2}(m-1)n.$

Let $ex(n, T_2(2m)) \le RHS \le ex(n, K_2) + \varepsilon {n \choose 2} - 1$. Since $ex(n, K_2) = 0$, and we consider the condition that $n \to \infty$, we have

$$\frac{1}{2}n^{2-\frac{1}{m}} \le \frac{1}{2}(m-1)^{\frac{1}{m}}n^{2-\frac{1}{m}} \le \frac{\varepsilon}{2}n^2$$

Which means $\frac{1}{\varepsilon} \gtrsim n^{\frac{1}{m}}$, then we have $m \gtrsim \log_{1/\varepsilon} n$.

- Theorem 2 (Bollob ás-Erdös). $f_2(n, \varepsilon) \lesssim 2 \left[\log_{1/\varepsilon} n \right]$.
- **Proof of Theorem 2.** Let $t = 2 \lfloor \log_{1/\varepsilon} n \rfloor$.

We need to construct a $K_{t,t}$ -free *n*-vertex graph *G* with $e(G) > \varepsilon {n \choose 2} - 1$.

Consider random graph $G = G(n, \varepsilon)$. i.e. agraph with *n* vertices, where each edge is present independently with probability ε .

Let
$$X = \#K_{t,t}$$
's in G .
So $\mathbb{E}[X] = \frac{1}{2} {n \choose 2t} {2t \choose t} \varepsilon^{t^2} < n^{2t} \varepsilon^{t^2} = (n^2 \varepsilon^t)^t$.
Since $t = 2 [\log_{1/\varepsilon} n]$, we have $\varepsilon^t \le \varepsilon^{\log_{1/\varepsilon} n} = \frac{1}{n^2} \Longrightarrow \mathbb{E}[X] < (n^2 \varepsilon^t)^t \le 1$.

- By deletion method, let G' be obtained from G by deleting one edge from each copy of $K_{t,t}$ in G. So G' is $K_{t,t}$ -free and $e(G') \ge e(G) X$.
- $\implies \mathbb{E}[\mathbf{e}(G')] \ge \mathbb{E}[\mathbf{e}(G) X] = \mathbb{E}[\mathbf{e}(G)] \mathbb{E}[X] = \varepsilon\binom{n}{2} 1.$
- There exists a G' (which is $K_{t,t}$ -free) with $e(G') \ge \mathbb{E}[e(G')] > \varepsilon {n \choose 2} 1$.
- $\Rightarrow \exp(n, K_{t,t}) > \varepsilon {n \choose 2} 1.$
- $\Rightarrow f_2(n,\varepsilon) < t = 2 \left[\log_{1/\varepsilon} n \right].$
- Corollary . For $\forall \varepsilon > 0$, $\log_{1/\varepsilon} n \leq f_2(n, \varepsilon) \leq 2 [\log_{1/\varepsilon} n]$.
- **Theorem 3.** For $0 < \varepsilon < \frac{1}{r(r+1)}$, $f_{r+1}(n,\varepsilon) \le f_2\left(\left\lceil \frac{n}{r} \right\rceil, r(r+1)\varepsilon\right)$.
- **Proof of Theorem 3.** Let $t = f_2\left(\left\lceil \frac{n}{r} \right\rceil, r(r+1)\varepsilon\right) + 1$

Then, there exists a $K_{t,t}$ -free $\left[\frac{n}{r}\right]$ -vertex graph H with $e(H) > r(r+1)\varepsilon\binom{n}{2} - 1$.

We want to construct a $T_{r+1}((r+1)t)$ -free graph G with relatively many edges.

Let G be obtained from $T_r(n)$ by adding H into one of its r parts.

But
$$e(G) = e(T_r(n)) + e(H)$$

$$> \exp(n, K_{r+1}) + r(r+1)\varepsilon\binom{\left\lfloor \frac{n}{r} \right\rfloor}{2} - 1$$

$$\geq \operatorname{ex}(n, K_{r+1}) + \varepsilon\binom{n}{2} - 1.$$

By define, $f_{r+1}(n,\varepsilon) < t = f_2\left(\left\lceil \frac{n}{r} \right\rceil, r(r+1)\varepsilon\right)$

$$\Rightarrow f_{r+1}(n,\varepsilon) \leq f_2\left(\left\lceil \frac{n}{r} \right\rceil, r(r+1)\varepsilon\right).$$

- **Exercise**. Prove G is $T_{r+1}((r+1)t)$ -free.
- **Corollary**. For $r \ge 1$ and $\varepsilon = \varepsilon(n) = o(1)$, $f_{r+1}(n, \varepsilon) \le 2 \log_{1/\varepsilon} n$.
- **Proof of Corollary**. Exercise (by theorem 2 and 3).

The best bound is obtained by Ishigami using Szemeredis regularity lemma.

- **Theorem (Ishigami).** Let $r \ge 2$ and $\varepsilon = o(1)$. Then $f_r(n, \varepsilon) \sim f_2(n, \varepsilon)$. In particular, $\log_{1/\varepsilon} n \le f_r(n, \varepsilon) \le 2 \log_{1/\varepsilon} n$.
- The Moon-Moser inequalities. Let G be a graph and N_i be the number of copies of K_i in G.
- Theorem 4. $N_3 \ge \frac{4N_2}{3} \left(\frac{N_2}{N_1} \frac{N_1}{4} \right).$
- **Proof of Theorem 4.** For an edge e, let d(e) be the number of triangle containing e. Then

$$3N_3 = \sum_{e \in E(G)} d(e) \ge \sum_{u, v \in E(G)} (d(u) + d(v) - n) = \sum_{u \in V(G)} d^2(u) - nm$$

By Cauchy-Scharwz inequality,

$$\sum_{u \in V(G)} d^2(u) - nm \ge n \left(\frac{\sum_{u \in V(G)} d(u)}{n}\right)^2 - nm = \frac{4m^2}{n} - nm$$

• **Remark**. This implies $ex(n, K_3) \le \frac{n^2}{4}$.

• Moon-Moser Theorem . If $N_{s-1} \neq 0$, then

$$\frac{N_{s+1}}{N_s} \ge \frac{s^2}{s^2 - 1} \left(\frac{N_s}{N_{s-1}} - \frac{n}{s^2} \right)$$

In fact, we show an even stronger result, generalizing this to r-graphs.

• **Theorem 5.** Let G be an r-graph, let $N_s = \#$ copies $K_s^{(r)}$ in G. If $N_{s-1} \neq 0$, then

$$\frac{N_{s+1}}{N_s} \ge \frac{s^2}{(s-r+1)(s+1)} \left(\frac{N_s}{N_{s-1}} - \frac{(r-1)(n-s) + s}{s^2}\right)$$

- Proof of Theorem 5. In this proof, we denote
 - (1) e = clique.
 - (2) $C_s = \{ \text{all } K_s^{(r)} \text{ in } G \}$
 - (3) If $e \in C_s$, then d(e) = # of $K_{s+1}^{(r)}$ containing e.

It is easy to see $\sum_{e \in C_s} d(e) = (s+1)N_{s-1}$.

For $e \in C_s$, denote e_1, e_2, \dots, e_s the *s* copies of K_{s-1} contained in *e*.

Claim. For $\forall e \in \mathcal{C}_s$, $d(e) \ge \frac{\sum_i d(e_i) - (n-s)(r-1) - s}{s - r + 1}$.

Proof of claim. For fixed *e*, we count the number T_e of pairs (A, v) s.t. |A| = s - 1, $A \subseteq e$,

 $v \notin e \text{ and } A \cup \{v\} \in \mathcal{C}_s.$

On one hand,

$$T_e = \sum_{\substack{|A|=s-1 \\ A \subseteq e}} \#(A, v) = \sum_i (d(e_i) - 1).$$

On the other hand, $T_e = \sum_{v \notin e} \#(A, v)$

Property. If vertex *u* does not form a copy of $K_{s+1}^{(r)}$ with *e*, then there are at most r - 1 many e_i 's such that $e_i \cup \{u\} \in C_s$.

Why? Since $e \cup \{u\}$ is not $K_{s+1}^{(r)}$, there exists a subset $R \subseteq e$ with |R| = r - 1 s.t. $R \cup \{u\}$ is not an edge.

Then only those e_i obtained from e by deleting a vertex of R can be $K_s^{(r)}$.

Thus, there are at most r - 1 such e_i 's.

Then for those $u \notin e$ satisfying $e \cup \{u\} \in \mathcal{C}_{s+1}, \#(A, u) = s$.

And for those $u \notin e$ with $e \cup \{u\} \notin C_s$, by property, $\#(A, u) \leq r - 1$.

Then $T_e = \sum_{v \notin e} \#(A, v) \le d(e)s + (n - s - d(e))(r - 1)$

 $\Rightarrow d(e)s + (n - s - d(e))(r - 1) \ge T_e = \sum_i d(e_i) - s.$

Proof of claim done.

By claim,

$$(s - r + 1)(s + 1)N_{s+1} = (s - r + 1)\sum_{e \in C_s} d(e)$$

$$\geq (s - r + 1)\sum_{e \in C_s} \frac{\sum_i d(e_i) - (n - s)(r - 1) - s}{s - r + 1}.$$

$$= \sum_{e \in C_s} \sum_i d(e_i) - N_s ((n - s)(r - 1) + s)$$

$$= \sum_{f \in C_{s-1}} d^2(f) - N_s ((n - s)(r - 1) + s)$$

$$\geq N_{s-1} \left(\sum_{f \in C_{s-1}} \frac{d(f)}{N_{s-1}}\right)^2 - N_s ((n - s)(r - 1) + s)$$

$$\geq \frac{s^2 N_s^2}{N_{s-1}} - N_s ((n - s)(r - 1) + s)$$

Proof done.