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* Recall : Erdés-Stone Theorem.

For V graph F with y(F) > 2, we have ex(n, F)= (1 — )% +o(1) (5).

We consider an improvement by providing a quantitative bound.
* Definition. For Vr > 2 and € > 0, let

fr(n, &) = max{m : ex(n, T, (rm)) < ex(n,K,) + () — 1}

* Remark.

(1) If m increases, ex(n, T,. (rm) will also increases.

(2) Erd6s-Stone Theorem tells for fixed m, € > 0, this inequality holds when n — co. But now
we consider the counterpart, that is, n, € fixed, how large m can be.

The meanings of f, (n,&) < Cis ex(n, T, (rC)) > ex(n, K,) + £(5) — 1.

* Definition. For f(n), g(n),

P f(n) _
(l) f~g if lll’l’ln_)(,o g(_n) =1
e f(n)
(Z)f S g if llmn_)ooﬁ <1

* Theorem 1. f,(n,¢) = logy /. n.

* Proof of Theorem 1. Recall K-S-T Theorem,

1 1
ex(n, T(2m)) = eX(n, Ky )< 3 (m — Divn®w + 2 (m = Dn.

Let ex(n, T;(2m)) < RHS < ex(n, K3) + e(’Z‘) — 1. Since ex(n, K;) = 0, and we consider the
condition that n — oo, we have

1 2_l<1( 1)l 2_l<€
277. _Zm n =5
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. 1 1
Which means - = nm ;then we have m = log; /. n.

« Theorem 2 (Bollob&-Erdés). f,(n, &) < 2[logy . 1.

« Proof of Theorem 2. Let t = 2[log, /. n|.

We need to construct a K, .-free n-vertex graph G with e(G) > &(}) — 1.

Consider random graph G = G(n, €). i.e. agraph with n vertices, where each edge is present
independently with probability «.

Let X = #K,,'sinG.

So E[X] = %(Z"t)(ztt)etz < n2tet? = (n2eh)t.

n

Since t = 2[log1/£ n|, we have et < glogi/en = lz = E[X] < (n?e®) < 1.



By deletion method, let G' be obtained from G by deleting one edge from each copy of K. in
G.S0 G is K, .-free and e(G') > e(G) - X.

= E[e(G)] = E[e(6) — X] = E[e(6)] — E[X] = £(}) — 1.

There existsa G (which is K, ,-free) with e(G') = E[e(G )] > () — 1.
= ex(n,K.) > €(}) — 1.

= fr(n,€) < t = 2[logy /e n|.

« Corollary . For V& > 0,log; /. n S f(n, &) S 2[logy /. n].

e Theorem 3. For 0 < e < r(r1—+1) frai(ne) < fy (H,r(r + 1)5).
« Proof of Theorem 3. Let t = f, (||, r(r + 1e) + 1

Then, there exists a K, .-free H-vertex graph H with e(H) > r(r + 1)5(’21) -1

We want to constructa T, 4 ((r + 1)t)-free graph G with relatively many edges.
Let G be obtained from T, (n) by adding H into one of its r parts.
But e(G) = e(T-(n)) + e(H)

>ex(n, K, 1) tr(r+ e (%l) -1
> ex(n, K,41) +€(3) — 1.
By define, f,.1(n,e) <t =f, ([;—l] ,7(r + 1)8)
= frnme) < i (|7, e+ 1e).
« Exercise . Prove G is T, 1 ((r + 1)t)-free.
* Corollary . Forr = 1and € = ¢(n) = o(1), fr41(n, &) < 2logy /e n.

* Proof of Corollary . Exercise (by theorem 2 and 3).

The best bound is obtained by Ishigami using Szemeredis regularity lemma.

» Theorem (Ishigami). Let r > 2 and € = o(1). Then f,.(n, )~ f,(n, ). In particular,
logi:n < fr(n,&) S 2logy /. n.

» The Moon-Moser inequalities. Let G be a graph and N; be the number of copies of K; in G.

4N, N, Ny

e Theorem 4. N3 > 3 (3, 4).

* Proof of Theorem 4. For an edge e, let d(e) be the number of triangle containing e. Then

3N, = 2 d(e) > Z d(w) +d() —n) = Z d?(u) — nm
e€E(G) u,veE(G) u€ev(ec)



By Cauchy-Scharwz inequality,

Yuer @) d(u)>2 i 4m?

dz(u)—nm2n< m=———nm
n n

u€ev(G)
n2

e Remark . This implies ex(n, K3) < e

» Moon-Moser Theorem . If Ny_; # 0, then

NS+1> s? (Ns n)

N, “s2—1\N,_; s2

In fact, we show an even stronger result, generalizing this to r-graphs.

* Theorem 5. Let G be an r-graph, let N, = # copies Ks(r) inG. If N_; # 0, then

Ngiq - s? N, (r—-1Dn-s)+s
Ny (s—=r+1D(s+1 <NS_1_ s?2 )

* Proof of Theorem 5. In this proof, we denote
(1) e = clique.
¢, ={al K" inG}
(3) If e € Cy, then d(e) = # of K", containing e.
Itis easy to see Y cc d(e) = (s + 1)N,s_;.

For e € C,, denote eq, 5, -+, €5 the s copies of K,_; contained in e.

Yid(e)—(n—s)r—1)-s

Claim . For Ve € Cg, d(e) = —)

Proof of claim . For fixed e, we count the number T, of pairs (4,v)s.t. |[A| =s—1, ACe,

vé&eand AU {v} € C;.

On one hand,
T, = Xja=s-1 #(4,v) = X;(d(e;) — 1).
ACe

On the other hand, T, = },¢. #(4,v)

Property . If vertex u does not form a copy of Ks(fl with e, then there are at most r — 1
many e;’s such that e; U {u} € C;.

Why? Since e U {u} is not Ks(:-)l there exists asubset R € e with |R| =r — 1s.t. RU {u} is
not an edge.

Then only those e; obtained from e by deleting a vertex of R can be KS(T).
Thus, there are at most r — 1 such ¢;'s.

Then for those u & e satisfying e U {u} € C,, 1, #(4,u) = s.

And for those u ¢ e with e U {u} & C, by property, #(4,u) <r —1.
ThenT, = Y ,¢. #(4,v) < d(e)s + (n —5— d(e))(r -1

= d(e)s + (n —s— d(e))(r —-1)=T,=);d(e) —s.



Proof of claim done.
By claim,

(s—7+ D+ DNgyy = (s =7+ 1) Xeee, d(e)

Yid(e)—(n—s)r—1)-s

= (S —r+ 1) Zee@s R

= Yeee, Did(e) — Ny((n —$)(r — 1) +5)
=Yree, , A2(f) = Ny((n—s)(r = 1) + )

> Net (Srees L) = N((n =)0 = 1)+ 5)

s—1 Ns—l

52N52
Ns—1

> —Ns((n—s)(r—1)+s)

Proof done.



